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Abstract. The increasing extent of wildfires has prompted investigation into alternative fire management approaches to
complement the traditional strategies of fire suppression and fuels manipulation. Wildfire prevention through ignition
reduction is an approach with potential for success, but ignitions result from a variety of causes. If some ignition sources
result in higher levels of area burned, then ignition prevention programmes could be optimised to target these distributions
in space and time. We investigated the most common ignition causes in two southern California sub-regions,
where humans are responsible for more than 95% of all fires, and asked whether these causes exhibited distinct spatial
or intra-annual temporal patterns, or resulted in different extents of fire in 10-29-year periods, depending on sub-region.
Different ignition causes had distinct spatial patterns and those that burned the most area tended to occur in autumn
months. Both the number of fires and area burned varied according to cause of ignition, but the cause of the most numerous
fires was not always the cause of the greatest area burned. In both sub-regions, power line ignitions were one of the top two
causes of area burned: the other major causes were arson in one sub-region and power equipment in the other. Equipment
use also caused the largest number of fires in both sub-regions. These results have important implications for
understanding why, where and how ignitions are caused, and in turn, how to develop strategies to prioritise and focus
fire prevention efforts. Fire extent has increased tremendously in southern California, and because most fires are caused by
humans, ignition reduction offers a potentially powerful management strategy, especially if optimised to reflect the

distinct spatial and temporal distributions in different ignition causes.

Received 22 February 2014, accepted 16 June 2014, published online 13 January 2015

Introduction

Recent increases in the size and extent of wildfires across the
world (Bowman et al. 2009) are a major policy and management
concern because of their ongoing and potentially escalating
effects on ecological integrity (Pausas and Keeley 2009),
and human lives and property (Price and Bradstock 2012;
Syphard et al. 2012). Wildfire policy and management efforts
have focussed largely on fire suppression and fuels management
(e.g. Butry 2009). However, the growing fire problem has
prompted investigation into alternative approaches for reducing
fire hazard, such as hardening structures to make them more fire
resilient (Gill 2005), land use planning (Syphard ef al. 2012;
2013) and creating areas of defensible space immediately
adjacent to structures in fire-prone areas (Cohen 2000; Winter
et al. 2009, Syphard et al. 2014).

An additional option is to develop wildfire prevention efforts
focussed on reducing fire ignitions (Prestemon et al. 2010; Gill
et al. 2013). Simulation models suggest that ignition manage-
ment, simulated through reduced ignition probability, can be
more effective than fuels management in reducing area burned
(Cary et al. 2009). However, we propose that beyond merely
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reducing ignitions, there may be value in targeting particular
types of ignitions if certain sources play a larger role in area
burned. In regions such as southern California and the Mediter-
ranean basin, human-caused ignitions dominate over natural
lightning ignitions, accounting for more than 95% of all fires
(Syphard et al. 2007, 2008; Romero-Calcerrada et al. 2008).
Human-caused fires derive from a variety of sources and these
potentially vary spatially and temporally in ways that could
affect the size and destructiveness of wildfires.

Most human-caused fires are unplanned and unintentional;
for example, escaped campfires or debris burns, sparks from cars
or equipment, children playing with fire or cigarette butts
thrown out of car windows. However, arson — or incendiary —
fires are intentionally set and represent fundamentally different
behaviour. Ignition prevention programmes could take many
forms depending on the target source of ignition. For example,
some governmental or volunteer organisations devote time and
resources to educating the public about the danger of accidental
ignitions, law enforcement often targets arsonists and some
public parks and forests are closed to recreational activities on
days with extreme fire weather.

www.publish.csiro.au/journals/ijwf
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Prestemon ef al. (2010) found that state expenditure on
wildfire prevention programmes in Florida yielded net benefits
economically and significantly reduced the number of prevent-
able wildfires. However, the authors found spatial variation in
the benefits of these programmes, potentially due to geographic
differences in the type of prevention activity applied relative to
the distribution and proportion of different preventable wildfire
causes. It therefore stands to reason that if different causes of
ignitions have distinct spatial or temporal distributions, ignition
prevention programmes could be optimised to target these
distributions in space, time or according to specific cause.

Recent investigations have demonstrated that ignition pat-
terns are non-random and significantly influenced by a range of
biophysical and anthropogenic factors (e.g. Cardille et al. 2001;
Sturtevant and Cleland 2007; Syphard ez al. 2008; Catry et al.
2009; Bar Massada et al. 2013; Sadasivuni et al. 2013), and
that the distribution and drivers of lightning ignitions are quite
different from those of anthropogenic ignitions (Reineking et al.
2010; Narayanaraj and Wimberly 2011). Other studies have also
shown arson fires to be predictable in time and space (Prestemon
and Butry 2005; Gonzalez-Olabarria ef al. 2012; Penman et al.
2013). Distinct spatio—temporal signatures of different ignition
sources have also been suggested through differences in spatial
clustering (Genton et al. 20006).

Our objective in this study was to explore further distinctions
among ignition causes — that is, beyond arson, accidental and
lightning — to identify whether different ignition sources exhibit
distinct spatial or intra-annual temporal patterns that result in
disproportionate numbers of fires or area burned in two southern
California sub-regions. Results demonstrating distinctive char-
acteristics of ignition causes could benefit prevention pro-
grammes through the determination of why, where and when
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most ignitions occur, and which ignition causes are most
important to target under varying circumstances.
We asked:

1. Do different ignition causes vary in terms of number of fires,
and area and month burned?
2. Are different ignition causes explained by different drivers?
. Are distinctive spatial patterns exhibited in different ignition
causes?

W

Methods

Sub-regions

The two sub-regions included the Santa Monica Mountains in
Ventura and Los Angeles counties and the western portion of
San Diego County that falls within the South Coast Ecoregion in
southern California, USA (Fig. 1). The San Diego study area
did not include the land and ignitions from Military Base
Camp Pendleton because of its unique ignition regime that is
driven almost entirely by military training activities. Owing to a
mediterranean climate, with mild, wet winters and long summer
droughts, both areas are extremely fire prone and large,
high-intensity wildfires driven by hot, dry Santa Ana winds are
characteristic of their natural fire regimes (Keeley 2006). The
areas are topographically and biologically diverse, and southern
California is home to more threatened species than any other
region in the mainland US. Although large areas of wildland
vegetation remain in both areas, substantial population growth
has resulted in massive expansion of the wildland—urban inter-
face (WUI) (Hammer et al. 2007), which in turn has led to a
surge in the number and areal extent of human-caused ignitions
(Keeley et al. 1999). Escalating fire frequency threatens the
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The Santa Monica Mountains and San Diego County sub-regions in southern California. “WUI’ is the
wildland—urban interface.
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regions’ biodiversity (Keeley ef al. 2012) and human safety
(Keeley et al. 2013). Southern California loses an average of 500
homes per year to wildfires (Cal Fire 2000). In both sub-regions,
humans are responsible for more than 95% of all ignitions
(Syphard et al. 2007).

Data
Ignition data

For San Diego County, we acquired all digital ignition data
from the California Department of Forestry and Fire Protection
(Cal Fire, Carl Palmer, pers. comm.). These data consisted of
separate files for different agencies responsible for the fires, and
we included those records from agencies that provided the
source of ignition. To calculate statistics describing area burned,
number of fires and month of ignition by cause, we used data
from Cal Fire, the US Fish and Wildlife Service (FWS), and the
US Forest Service (USFS) dating from 2000 to 2010, which
included 3438 ignitions. Unlike other fire databases, these data
had no minimum size limit. For all ignition data, we carefully
reviewed the records to remove duplicates that were listed in
more than one agency’s database.

Owing to the spatial nature of the regression modelling and
mapping analysis, we further restricted the San Diego ignition
data to recent years when the spatial accuracy was more precise.
For spatial analysis of Cal Fire data, we used ignition location
data from 2006 to 2010 (n=1513) as these were reported at
the highest level of precision (precise to 5 v. 2 decimal digits, in
earlier years). The precision of the FWS (2000-2010, n =372)
and USFS (2000-2010, n =535) data matched the most recent
Cal Fire data.

The ignition data for the Santa Monica Mountains included
248 coordinate points from 1982 to 2011 acquired from the
National Park Service (NPS) fire records, assembled by Robert
S. Taylor (pers. comm.). These data were compiled from the
National Fire Plan Operations and Reporting System database,
and the Department of Interior Wildland Fire Information
Management database. Ignition locations were error checked,
validated and corrected using the original paper 1202 forms and
ancillary data on fire incidents, including historical orthophotos,
satellite imagery and Burned Area Reflectance Classification
imagery, as well as first-hand accounts by several long-time NPS
personnel. The median estimated accuracy was 30 m, the mode
was 10 m and the mean (286 m) was strongly affected by outliers.

Explanatory variable data

In a previous study in the Santa Monica Mountains, we
identified several human and biophysical variables that were
significant in explaining the spatial distribution of ignitions
(Syphard et al. 2008). Here we considered the same terrain
variables for both sub-regions, including elevation, slope gradi-
ent and a transformed slope aspect (‘south-westness’),” all
derived from 30-m US Geological Survey Digital Elevation
Models. Terrain variables may explain ignition patterns through
their influence on factors that affect flammability and spread,
such as local climate, fuel moisture, vegetation composition and
distribution, soil moisture and development, and relative humid-
ity (Whelan 1995). Because human-caused ignitions frequently
occur along transportation corridors (Stephens 2005), we also
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reused the US Topologically Integrated Geographic Encoding
and Referencing system TIGER/line files (available at https://
WWww.census.gov/geo/maps-data/data/tiger-line.html, verified
6 November 2014) to create interpolated maps of distance to
roads, this time adding the San Diego sub-region.

Variables delineating climate, vegetation and human variables
were updated from the Syphard ez al. (2008) study to ensure data
consistency between the two sub-regions, and in the case of
human variables, to take advantage of better data availability.
Maps of recent historical climate reflecting spatial variability in
average conditions (averaged over 1970-1999) included mean
January minimum temperature, mean July maximum temperature
and mean annual precipitation using 800-m grids from the
Parameter-elevation Regressions on Independent Slopes Model
(PRISM Climate Group 2004). Broad-scale temperature and
precipitation may be important predictors of ignition locations
because climate trends are associated with factors such as fuel
moisture or composition and productivity, which in turn can affect
fuel accumulation or combustion (Whelan 1995). After perform-
ing a correlation analysis to check for multicollinearity, we
eliminated January minimum temperature and annual precipita-
tion from the analysis because they were correlated (» > 0.6) with
several other variables. However, mean July maximum tempera-
ture was not correlated with the other variables in the analysis.

Because flammability and fire behaviour tend to vary accord-
ing to vegetation type in southern California (Wells ez al. 2004),
we used the Calveg existing vegetation data (USDA Forest
Service 2010), which covered the whole region. We stratified
the vegetation classes into five general vegetation types that
reflect physiognomic structure and broad differences in fire
behaviour, including chaparral shrublands, coastal sage scrub,
grass, forest and non-vegetated, which is typically urban and
thus includes a mix of cover types, from impervious surface to
grass and ornamental landscaping vegetation around homes.

Although fuel age and flammability are unrelated in extreme
weather conditions in southern California (Moritz et al. 2004),
we evaluated fuel age in this study as a potential predictor of
ignition locations because our dataset included small fires that
burned under a range of weather conditions. This was a variable
we did not explore in previous research (Syphard et al. 2008).
The majority of fires are stand replacing in southern California
shrublands, so we calculated the age of the vegetation at every
ignition point by subtracting the time of last fire from the year of
the ignition event using fire perimeter maps from the California
Department of Forestry and Fire Protection (Cal Fire 2013).

Finally, we used updated GIS data of all residential structures
in each sub-region (from Syphard et al. 2012) to interpolate
maps of housing density and distance of ignitions to structures.
We used these variables in lieu of data delineating the WUI,
which was important in Syphard ez al. 2008, but correlated with
our housing variables here (> 0.6). Because most ignitions in
this region are caused by humans, we expected the housing
variables to delineate patterns where human activities, and thus
fire ignitions, are concentrated.

Analysis

For both sub-regions, we divided the ignition data into groups
representing the most common, major causes, which were listed
as attributes of the spatial data. The major causes were the same
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for both regions, although a substantial number of wildfires
were the result of escaped prescribed burns in the Santa Monica
Mountains, so we retained this as an additional, separate group
in that sub-region. In both regions, ~30% of fire ignition causes
were labelled as ‘unknown’ or ‘miscellaneous.” Because these
were uninformative relative to our research questions, we
excluded them from the analysis.

To evaluate the relative contribution of each ignition cause
to the extent of fire in each sub-region, we plotted the proportion
of number of fires and the area burned by those fires for all
ignition types. We also evaluated the seasonal distribution of
area burned by ignition cause by plotting the proportion of each
cause’s total area burned by the month when the ignitions of
those fires occurred.

For both predictive mapping and evaluation of variable
importance, we used the MaxEnt model (Phillips et al. 2006;
Elith et al. 2011), which employs a machine learning algorithm
to estimate distributions by minimising the relative entropy
between probability densities through iterative contrasts among
values of explanatory variables at locations where ignitions
occurred v. locations that are randomly distributed across the
sub-region. We chose the MaxEnt modelling approach because
it was shown to be more suitable than other statistical methods
for ignition modelling (Bar Massada et al. 2013); it has been
successfully used to project fire risk to houses (Syphard et al.
2012, 2013); and it is one of the best-performing species
distribution models, especially in cases with presence-only data
and small sample sizes (Elith et al. 2006, Wisz et al. 2008). We
developed separate MaxEnt models for all ignition types in both
sub-regions.

For all models, we used the default random background
sample of 10 000 points. These non-ignition points should not be
considered true absence points because it is possible that an
ignition could occur in these locations, but simply did not during
the time frame of the study. Rather, these background points
represent the full range of environmental variation across the
sub-region from which we can thus distinguish the environmen-
tal conditions that characterise the ignition locations. We used
hinge features, and linear and quadratic functions to produce
smoother response curves that minimise over fitting of the
model (Elith et al. 2011). The output of MaxEnt assigns a
probability of ignition (from 0-1) to every cell in the map. This
probability is based on logistic function of the MaxEnt raw
values, which are exponential functions of the explanatory
variables. MaxEnt estimates variable importance as a function
of information gain resulting from every environmental variable
throughout the model iterations. To assess the accuracy of the
MaxEnt models, we used a bootstrapping procedure in which we
ran the model 10 times, each with a random percentage of the
ignition data (sampling with replacement) withheld for testing
the model predictions. The results are presented as averages of
the 10 replicate simulations.

We did not use fuel age as a predictor in the MaxEnt analysis
because the software selects values of background points from
static maps. Therefore, to evaluate the contribution of fuel age
relative to other variables, and to determine whether relative
variable importance was similar between two methodological
approaches, we performed a hierarchical partitioning analysis
(Chevan and Sutherland 1991) with the hier.part package in
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R (Walsh and Mac Nally 2008). Hierarchical partitioning
evaluates all combinations of explanatory variables in a multiple
regression framework and returns the unique, independent
percent contribution of each variable to model fit. Because we
had a binary dependent variable (ignition v. non-ignition), we
used the binomial family and maximum likelihood goodness-of-
fit measure to develop our models.

To perform the hierarchical partitioning, we generated ran-
dom background points that were at least 250 m apart to
minimise spatial autocorrelation (Dormann ez al. 2007). We
generated 10 000 points in San Diego County and 5089 points in
the Santa Monica Mountains, which was the largest number
possible while maintaining a 250-m separation distance. For all
ignition and background points, we extracted values from our
gridded maps of the explanatory variables. To assign a vegeta-
tion age to the random background points, we first recorded the
proportion of ignitions that occurred in each year in each sub-
region. Based on those proportions, we extracted vegetation age
data for the background points from maps of time since last fire
for every year. Because the hierarchical partitioning algorithm
does not treat categorical variables, we converted the categorical
vegetation map used for MaxEnt into a discrete binary variable
representing grass or no grass. We chose grass as the vegetation
type to model because the MaxEnt models showed a dispropor-
tionately large number of ignitions that occurred in that vegeta-
tion type, particularly in the Santa Monica Mountains.

Because some of the ignition cause groups had fewer than
20 observations, we only performed the hierarchical partition-
ing analysis for the full set of ignitions in the Santa Monica
Mountains. Although MaxEnt has shown excellent predictive
power at all sample sizes, even as small as 10 (Wisz et al.
2008), we also withdrew several ignition types from the
MaxEnt analysis in the Santa Monica Mountains because of
low sample size.

Results

There were no substantial differences in the number of fires by
cause in the Santa Monica Mountains, although equipment
fires were the most numerous (Fig. 2a). In contrast, most of the
area burned in the Santa Monica Mountains resulted from arson
and power line ignitions, with moderate area burned due to
campfires and escaped prescribed fires. The most numerous
fires occurred primarily in late spring from May through July,
but most of the arson, power line and campfire ignitions that
burned the majority of area occurred from August through
November (Fig. 3a).

In San Diego County, equipment-caused fires were by far
the most numerous, and these also accounted for most of
the area burned, followed closely by the area burned by power
line fires (Fig. 2b). Ignitions classified as equipment caused
frequently resulted from exhaust or sparks from power saws or
other equipment with gas or electrical motors, such as lawn
mowers, trimmers or tractors. Most of the area burned by
equipment use and power lines occurred in October, although
a moderate extent of area burned was caused by power lines in
July as well (Fig. 3b).

The analysis of variable importance in MaxEnt showed
that the relative contribution of explanatory variables varied



Wildfire by cause of ignition

(@) 0.7 -

0.6 W Area burned

B Number of fires

0.5

0.4

0.3

0.2

0.1+

Proportion

(b) 0.7 -

0.6

B Area burned
® Number of fires

0.5

0.4

0.3 A

0.2

0.1 4

Fig. 2. Proportion of number of fires and area burned by cause of ignition
in (a) the Santa Monica Mountains and () San Diego County. ‘EscapedRX’
means escaped prescribed fire.

somewhat according to ignition source as well as by sub-region
(Table 1). Overall, vegetation type was more important in the
Santa Monica Mountains than in San Diego County, with grass
being the most common vegetation type for all ignition causes.
In San Diego, ignitions occurred most frequently in grass or
forest vegetation types. Distance to roads and structure density
were more predominant overall in explaining ignitions in San
Diego County. In fact, distance to road contributed more than
50% to the model for all ignition sources except for campfire
and lightning. In both sub-regions, ignitions were more likely
to occur close to roads and structures, and at intermediate
structure densities. The mean area under the curve (AUC) of
receiver operating characteristic plots for the 10 replicate,
bootstrapped models ranged from 0.90 to 0.97 for the Santa
Monica Mountains and from 0.81 to 0.96 for San Diego County
(Table 1). These AUCs indicated good overall ability of the
models to discriminate between ignition and background
locations.

The difference in relative contribution of explanatory vari-
ables between the sub-regions was not as apparent when all
ignition data were modelled together using hierarchical parti-
tioning (Fig. 4), although the hierarchical partitioning analysis
of separate ignition cause groups in San Diego County showed
similar rankings to the MaxEnt results (not shown). In the Santa
Monica Mountains, more ignitions were explained by grass than
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Fig.3. Proportion of all area burned by ignition cause by month for (@) the
Santa Monica Mountains and (b) San Diego County.

in San Diego County, although vegetation age was not important
in explaining ignition patterns in either sub-region.

Different sources of ignitions also had different spatial pat-
terns, as seen through the predicted ignition probability maps
(Figs 5, 6). In the Santa Monica Mountains (Fig. 5), campfires
and playing-with-fire ignitions had high prediction probabilities
in diffuse patterns throughout the sub-region with slightly higher
probabilities along the perimeter. Power line ignitions had a more
concentrated distribution along the perimeter of the sub-region
and in all three the effect of topography is evident through the
lines of high probability that trace the canyons leading into
the mountains. The effect of roads on ignition probabilities for
arson- and vehicle-caused fires is apparent through the linear
features crossing the landscape, and the equipment-caused fires
are mostly located near residential areas.

In San Diego County, lightning- and campfire-caused igni-
tions were predicted at highest probability in distinct patterns in
the eastern part of the region, where the higher elevation conifer
forests are distributed (Fig. 6). Road influence on the spatial
pattern of ignition probabilities is clear in fires caused by arson,
equipment use, playing with fire, smoking and vehicles, although
arson fires show the highest probabilities in the western, high-
density urban areas. The WUI, where housing density is low to
intermediate is an apparent influence in most ignition maps as
illustrated by comparison of Fig. 1 with Figs 4 and 5.
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Table 1.
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Mean relative variable importance measured by percent contribution and AUC for 10 replicates of MaxEnt models for patterns of different

ignition causes in the Santa Monica Mountains and San Diego County

Distance to Distance to Structure South- July Elevation Slope Vegetation Mean
road structure density westness temperature type AUC
Santa Monica Mountains
Arson 37.8 12.9 6.2 6.3 5.5 1.5 14.1 15.6 0.96
Campground 12.4 21.8 10.1 16.4 9.4 8.5 11.4 10.0 0.90
Equipment 13.0 10.1 30.7 9.3 9.2 1.8 6.3 19.7 0.97
Playing 25.7 12.5 11.8 153 2.7 10.6 10.9 10.4 0.91
Powerline 20.3 6.3 19.4 7.1 19.8 7.8 43 15.0 0.94
Vehicle 47.5 44 5.2 12.0 34 9.4 5.5 12.5 0.96
San Diego County
Arson 65.1 5.4 18.3 1.5 3.5 3.0 3.0 0.2 0.87
Campground 53 5.7 25.7 2.1 8.9 21.7 11.7 18.9 0.81
Debris 73.3 4.0 16.9 0.8 1.1 0.9 0.2 2.7 0.93
Equipment 72.0 0.5 20.9 0.5 3.8 1.5 0.6 0.3 0.87
Lightning 23.8 3.2 40.1 2.2 8.4 16.4 0.4 5.6 0.77
Playing 78.6 2.9 10.5 1.2 1.5 2.9 1.8 0.6 0.96
Powerline 49.0 4.0 20.0 0.1 1.4 33 2.2 1.7 0.96
Smoking 65.5 2.3 17.5 2.6 0.1 8.1 0.7 3.0 0.83
Vehicle 72.0 1.0 17.3 1.7 43 1.9 0.5 1.4 0.95
100% - study were generally concentrated in close proximity to human
Veaetati infrastructure, with some significant contributions from climate,
90% | getation age ’ ! . .
. terrain and vegetation (Table 1, Fig. 4). Despite these general
S 8o% 1 Grass vegetation type similarities, however, this study showed that the relative
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S 0% 4 = July temperature ignition cause. These Yariations in §patia1 patt‘erns .anq impor-
£ tance of predictor variables have important implications for
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o a major ignition source for area burned is power lines (Fig. 2).
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10% 4 fires, not only in southern California (Keeley e al. 2012), but
also in Australia (e.g. Cruz ef al. 2012). One reason this is so
0% - . important in southern California is that power line fires are
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Fig. 4. Percent independent contribution of variables in hierarchical
partitioning models explaining patterns of all ignitions in the Santa Monica
Mountains and San Diego County.

Discussion

Fire extent and frequency have increased in recent decades in
southern California (Keeley ez al. 1999), and because most fires
are caused by humans, ignition reduction offers a potentially
powerful management strategy. The present study showed that
in southern California, different causes of ignitions had dis-
tinctive spatial and temporal patterns, which resulted in varying
numbers and extent of fires. This makes clear the point that
certain causes of ignition have disproportionately high
fire effects. As in previous modelling studies in the southern
California region (Syphard ez al. 2008), ignition locations in this

concentrated in the autumn months (Fig. 3) and are associated
with extreme winds known locally as Santa Ana winds, which
contribute to extreme fire behaviour (Mitchell 2013). Santa Ana
winds present a major challenge for utilities in the region
because high-velocity gusts may cause power lines to fall or
arc, conductors to clash or trees to come into contact with the
lines. Power line-ignited fires may also become large when they
are located in remote areas where access to the fire is difficult.

Aside from minimising vegetation under overhead conduc-
tors, options to reduce these ignitions have been controversial.
Owing to a rash of lawsuits against utility companies (Keeley
et al. 2012, box 13.2), some have responded by monitoring
weather conditions and selectively turning off the power supply
to high-risk areas under high wind conditions. However, this
‘solution’ is controversial because it carries with it other risks
such as encouraging residents to use gas-powered generators,
which can cause fires; and if a fire does occur, it disrupts
communications and can threaten structure protection for
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homes dependent on wells for their water source. It has been
suggested that underground power lines in high-risk wind
corridors could reduce such ignitions (Keeley e al. 2009), but
this option is generally viewed as too costly by power compa-
nies. In Australia, however, underground power lines were
recommended after the deadly Victoria fires in 2009, and some
state regulations now require them under certain conditions
(Victorian Bushfires Royal Commission 2010).

The other very important ignition source for area burned
differed between the two regions. In the Santa Monica Moun-
tains, arson fires were a major factor, and such ignitions are
fundamentally different from other human ignition causes
because they are intentional rather than accidental. Therefore,
their location and timing are chosen. Miller (1968) noted a link
between Santa Ana winds and crime in southern California,
which would be consistent with large arson fires in the autumn
months when the extreme fire hazard created by Santa Ana
winds is widely noted in the media. Several comprehensive
studies of arson ignitions have been conducted (Prestemon and
Butry 2005; Thomas et al. 2011); but as these studies suggest,
much more research needs to be carried out, as the behavioural
patterns driving arson ignitions is complex and may be similar to
other criminal activities. Further modelling of arson fires could
therefore integrate theories from the criminology and social
sciences into the development of explanatory variables. In fact,
theories on accidents could also be used to create explanatory
variables for unintentional human-caused ignitions.

Law enforcement has become quite strict in southern
California, as arson is a felony. In fact, the arsonist convicted

for starting the 2003 Old Fire in San Bernardino County, CA
received the death penalty (http://articles.latimes.com/2013/jan/
29/1ocal/la-me-old-fire-sentencing-20130129,  verified 13
August 2014). Information on the timing, drivers and spatial
pattern of these ignitions, combined with more behavioural
analyses, might help police organisations identify how to
prevent these fires before they start. However, a potential pitfall
of addressing arson fires is that, because arsonists want to cause
fires, they might alter their behaviour to adapt to and avoid
targeted management or enforcement activities. Nonetheless,
research on other crimes suggests that criminal prevention
efforts actually help reduce crime in neighbouring areas, rather
than to simply move the criminal behaviour to untargeted
locations (Weisburd et al. 2006).

The other ignition source associated with large area burned
was equipment use in San Diego County. Although equipment
use was one of the most numerous ignition causes in the Santa
Monica Mountains, it did not result in extensive area burned.
Across the state of California, equipment use is a common
ignition cause and results in more than 1600 fires per year (Cal
Fire 2011).

One challenge in trying to manage for equipment fires is that
they encompass a wide range of activities that are collectively
presented as ‘equipment caused’ in the fire records, making it
impossible to pinpoint the type of equipment. Not surprisingly,
most equipment-caused ignitions occur close to roads and
within the WUI (Figs 5, 6). Because equipment use is such a
common ignition source and is a potentially modifiable behav-
iour, this is one ignition source that should be a target for future
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Fig. 6. Predicted probability of ignition (0—1.0) by major cause in San Diego County.

prevention actions. For example, strict ordinances on the use of
certain types of equipment in and adjacent to wildland areas
during red flag warning days could reduce the incidence of
large catastrophic fires in the region. Further investigation into
the types of equipment that cause most fires would also be useful
in further refining how to best allocate resources for outreach
materials.

In addition to the timing of different ignition causes in
autumn months, another explanation for differences in number
of fires and area burned is that certain ignition causes may
exhibit distinct spatial patterns that correspond with locations of
higher fire danger. For example, extreme wind patterns in the
region follow predictable pathways, and the region’s largest
fires have historically occurred in those areas (Moritz et al.
2010). Therefore, an ignition that occurs along wind corridors
during extreme fire weather and is also in a fairly inaccessible
region may have a greater chance of developing into a large fire.

In some places, these wind corridors are associated with repeat-
ed housing losses (Syphard et al. 2012).

One limitation in this analysis by ignition cause is that ~30%
of ignitions were of unknown or miscellaneous cause in both
sub-regions. These ignitions did contribute a substantial extent
of fire burned, and it is difficult to develop targeted strategies
for preventing these. Nevertheless, the proportion of known
ignition causes is much higher in California than in many other
regions, and is continuing to improve. Unknown fire causes is a
worldwide problem, and many other regions or countries have
substantially higher proportions of fires started by unknown
causes (United Nations Economic Commission for Europe
2002). This uncertainty explains why some investigators lump
human-caused ignitions together for study (e.g. Martinez et al.
2009). The importance of documenting fire causes is receiving
increased recognition, however, and some studies are beginning
to explain the complex social, environmental, economic and
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political controls that contribute to human-caused ignitions
(Romero-Calcerrada et al. 2008; Meddour-Sahar et al. 2013).

Regardless of ignition cause, proximity to roads was consis-
tently important in explaining ignition location. This relation-
ship is highly consistent among studies of ignition patterns,
including our previous study in the region (e.g. Sturtevant and
Cleland 2007; Syphard et al. 2008; Narayanaraj and Wimberly
2012). One reason for this consistent relationship is that, in
addition to the concentration of human activities that spark
ignitions, vegetation may be more flammable along roads
(Curt et al. 2007; Narayanaraj and Wimberly 2012). More
research is needed, however, to understand how and why so
many fires start along roads and whether any prevention
strategies could be feasibly and effectively implemented.
One idea would be to install barriers between roads and the
wildland in fire-prone locations. However, this could be more
costly than educational campaigns so a cost—benefit analysis
would be highly beneficial.

Conclusion

Although it is generally understood that the primary causes
and drivers of wildland fire ignitions vary over space and time
(Stephens 2005), our results underline the importance of
examining local trends in where, why and how ignitions occur.
Even within two similar sub-regions in southern California,
there were some differences in number and extent of fires by
ignition cause, as well as the relative importance of the factors
that explained their distribution. For example, the presence of
grass explained a larger proportion of ignition distribution in the
Santa Monica Mountains, whereas proximity to roads and
structure density were more important in San Diego County.
In regions where humans cause a substantial number of fire
ignitions, it is important to recognise that not all ignitions have
the same effect or spatio—temporal signature. Because each
ignition cause represents a different type of behaviour,
prevention programmes could allocate resources to target
behaviours in proportion to their effect in time or space.

Despite local variation, broad-scale similarities within the
study regions, such as the importance of power lines, timing of
ignition in autumn, and proximity to roads and the WUI also
suggest informative general patterns that may be useful when
finer scale detail is unavailable. For example, given the overall
importance of ignitions occurring close to human infrastructure,
planners may want to consider that if housing development and
roads continue to expand into the wildland, the distribution of
ignitions may therefore also expand. Development of low-
density, exurban housing may also lead to more homes being
destroyed by fire (Syphard et al. 2013). Another consideration is
that frequent fires and housing growth may lead to the expansion
of highly flammable exotic grasses that can further increase
the probability of ignitions (Keeley et al. 2012). Longer term
management strategies may therefore benefit from future fore-
casts of ignition patterns relative to projections of housing
growth or vegetation change.

Other management responses that could benefit both regions
would be restrictions on equipment use and other activities that
could start a fire during the Santa Ana wind season and greater
patrol for arson during extreme weather conditions. Putting
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power lines underground and identifying strategies that could
effectively reduce roadside ignitions are additional challenges
that deserve serious consideration throughout the southern
California region.
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