Modeling plant species distributions under future climates: how fine scale do climate projections need to be?

JANET FRANKLIN*, FRANK W. DAVIS†, MAKIHIKO I KEGAMI†, ALEXANDRA D. SYPHARD‡, LORRAINE E. FLINT§, ALAN L. FLINT§ and LEE HANNAH¶

Abstract

Recent studies suggest that species distribution models (SDMs) based on fine-scale climate data may provide markedly different estimates of climate-change impacts than coarse-scale models. However, these studies disagree in their conclusions of how scale influences projected species distributions. In rugged terrain, coarse-scale climate grids may not capture topographically controlled climate variation at the scale that constitutes microhabitat or refugia for some species. Although finer scale data are therefore considered to better reflect climatic conditions experienced by species, there have been few formal analyses of how modeled distributions differ with scale. We modeled distributions for 52 plant species endemic to the California Floristic Province of different life forms and range sizes under recent and future climate across a 2000-fold range of spatial scales (0.008–16 km²). We produced unique current and future climate datasets by separately downscaling 4 km climate models to three finer resolutions based on 800, 270, and 90 m digital elevation models and deriving bioclimatic predictors from them. As climate-data resolution became coarser, SDMs predicted larger habitat area with diminishing spatial congruence between fine- and coarse-scale predictions. These trends were most pronounced at the coarsest resolutions and depended on climate scenario and species’ range size. On average, SDMs projected onto 4 km climate data predicted 42% more stable habitat (the amount of spatial overlap between predicted current and future climatically suitable habitat) compared with 800 m data. We found only modest agreement between areas predicted to be stable by 90 m models generalized to 4 km grids compared with areas classified as stable based on 4 km models, suggesting that some climate refugia captured at finer scales may be missed using coarser scale data. These differences in projected locations of habitat change may have more serious implications than net habitat area when predictive maps form the basis of conservation decision making.

Keywords: biodiversity, California, climate change, downscaling, habitat, impacts, spatial resolution, terrain, topography

Introduction

Species distribution models (SDMs) are currently the most widely used of scientific approaches to examine potential climate-change impacts to biodiversity. These models, which are based on the statistical association of species distributions with mapped climatic and other environmental factors, have many well-known limitations (Wiens et al., 2009; Dawson, 2011). One major concern is that the spatial scale of climate data used in most SDMs may be inadequate due to the coarse resolution of global climate models (GCM) or downscaled derivatives of those models (Seo et al., 2009). In rugged terrain, climate grids produced at 1–100 km scale may be too coarse to capture topographically controlled climate variation at 10–100 m scale that can exert a strong influence on species distributions (Lookingbill & Urban, 2003; Ashcroft et al., 2009; Dobrowski et al., 2009). These local topoclimatic habitats may need to be accounted for when evaluating climate-change impacts on biodiversity as they may constitute refugia for local populations and increase habitat connectivity for dispersal and migration (Jackson & Overpeck, 2000; Ackerly et al., 2010; Austin & Van Niel, 2011).

Two recent studies have shown that SDMs based on fine-scale climate projections provide markedly different estimates of climate-change impacts than coarse-scale projections; however, these studies only examined alpine plants and reached different conclusions. One study predicted greater persistence of suitable habitat...
under climate-change scenarios using finer resolution data (Randin et al., 2009), whereas the other predicted greater persistence of habitat under warming scenarios using coarser data (Trivedi et al., 2008). To help clarify the effect of model resolution on climate-change impact analysis, we modeled current and projected future ranges of 52 endemic plant species over the California Floristic Province, a large, topographically heterogeneous study area. Species were selected to represent a variety of life forms and range sizes. We analyzed the predicted distributions across a 2000-fold range of spatial resolutions (0.008–16 km²) by independently downsampling 4 km climate models to 800, 270, and 90 m. We compared modeled distributions to ask “how fine-scale do climate projections need to be to capture the strong topoclimatic control on plant species distributions?”

Our specific questions include:

1. How does the extent and location of modeled suitable habitat under current climate depend on the spatial resolution of the climate data?
2. How does the predicted distribution of climate-change refugia (areas of future climatic suitability within the current species range) vary as a function of the scale (spatial resolution or grain) of climate grids?

We hypothesized that:

(a) On average, the predicted extent of modeled suitable habitat would increase with coarser climate data in a given time period owing to spatial generalization, and its location would have diminishing spatial congruence (overlap) with the area of suitable habitat predicted at the finest scale;
(b) climate-change refugia are more likely to be detected at finer spatial resolutions that better represent topographic effects on climate.

Materials and methods

Future climate scenarios

Global climate models were selected that realistically represent the spatial structure of precipitation and important orographic features, accurately simulate California’s recent historical climate, and differ in their sensitivity to greenhouse gas forcing (Cayan et al., 2008). These were the Parallel Climate Model (PCM) and the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1 model from the IPCC (2007) Fourth Assessment series. Greenhouse gas emissions scenarios examined were A2 (medium–high) and B1 (low) emissions (Nakićenović et al., 2000). The B1 scenario assumes that global CO₂ emissions peak at approximately 10 Gt yr⁻¹ in the mid-21st century followed by a leveling of the concentrations before dropping below current levels by 2100, resulting in a doubling of CO₂ relative to its preindustrial level by the end of the century (approximately 550 ppm). Under the A2 scenario, CO₂ emissions continue to climb throughout the 21st century, reaching almost 30 Gt yr⁻¹.

Climate-data downscaling and bias correction

Climate model outputs included daily and monthly temperature and precipitation maps through the end of the 21st century. These coarse-scale (275 km) grids of projected climate were first statistically downscaled to 12 km resolution using the method of constructed analogs (Hidalgo et al., 2008). They were then spatially downscaled from 12 km with digital elevation grids to four resolutions: 4218 m (hereafter ‘4 km’), 800, 270, and 90 m. The data were first downscaled to 4 km and bias corrected using historical climate data for 1950–2000 available for the USA from PRISM (Daly et al., 1994) as monthly maps (http://www.prism.oregonstate.edu/). The downscaling approach applied a spatial Gradient and Inverse Distance Squared weighting (GIDS) to monthly point data by developing multiple regressions for every fine-resolution cell for every month. Parameter weighting is based on the location and elevation of the coarse-resolution cells surrounding each fine-resolution cell to predict the climate variable of the fine-resolution cell (Flint & Flint, 2012; modified from Nalder & Wein, 1998). As discussed in Flint & Flint (2012), this procedure improves the spatial representation of air temperature over the landscape because at the finer scale it does not average the air temperature over the large area of the coarser scale and allows for the calculation of local adiabatic lapse rates to extrapolate to higher and lower elevations than the coarser averaged dataset. This is essentially a ‘draping’ of the climate variable over the landscape, which allows for comparisons of vegetation with air temperature estimates that are potentially more accurate at the finer scale than the coarser scale. The modified GIDS technique does not introduce additional uncertainty in the downscaling process, and may indeed improve the estimate of the climate variable by incorporating the deterministic influence (such as lapse rates or rain shadows) of location and elevation on climate. The details of the methodology and evaluation of uncertainty are discussed in Flint & Flint (2012). We derived mean values from downscaled grids of historical climate for the period 1971–2000 and for the future projections for the period 2071–2100 at each resolution.

Instead of including a large number of strongly correlated bioclimatic variables, we analyzed a small set of temperature and moisture variables (Table 1) expected to be physiologically relevant to (Austin & Van Niel, 2011) and found to be associated with western plant distributions (Stephenson, 1998; Rehfeldt et al., 2006). These included minimum temperature of the coldest month (T_min), maximum temperature of the warmest month (T_max), mean temperatures of the wettest (T_wet) and driest (T_dry) quarters, growing degree days for days >5 °C, mean precipitation of the wettest (Ppt_wet) and warmest (Ppt_warm) quarters, and an aridity index (the ratio of annual precipitation to potential evapotranspiration (PET)). Growing Degree Days (GDD5) is a cumulative annual sum of average temperature per day above a base temperature (5 °C). We calculated GDD5 using minimum and maximum monthly temperatures and the number of days per month (see Sork et al., 2010).
Aridity was most strongly correlated with Ppt_wet (r = 0.15) and with growing degree days above 5 °C (GDD5) (r = 0.12). Squared correlations among temperature variables ranged from 0.35 (T_max vs. T_min) to 0.96 (T_min vs. T_wet) (n = 70 989). Squared correlations between temperature and precipitation variables were much lower, ranging from 0.03 (T_max vs. Ppt_wet) to 0.15 (GDD5 vs. Ppt_wet). Aridity was most strongly correlated with Ppt_wet (r² = 0.64).

Species data

Fifty-two species (Table 2) were selected because their current ranges, or most of their ranges, are confined to the California Floristic Province. They were also chosen to represent a variety of range sizes (narrowly vs. widely distributed), life forms (trees, shrubs, herbs), and habitats representing different climate subregions (coastal, foothill, lower and upper montane). Range size was approximated by summing the area of ecological subregions within which species occurrences fell (Fig. 1). Species presence data came from a database of more than 82 000 locations that was compiled for ongoing studies of climate-change impacts on California plant species (Viers et al., 2006; Hannah et al., 2008). The number of presences ranged from 9 to 6359 at 90 m resolution for these 52 species, and one observation per grid cell was used for modeling at each resolution (Table 2). The majority of these occurrence records came from vegetation plot surveys conducted since the mid-1990s and their locational precision is on the order of tens of meters, well within the finest resolution considered in this study. Some of the records came from older natural history collections (<1%) or surveys (18%) and therefore their locational uncertainty is on the order of hundreds of meters, contributing some noise to the analyses.

Species distribution modeling

We used the MaxEnt software (Phillips et al., 2006; Elith et al., 2011) for species distribution modeling because this method is particularly effective when species occurrence data comprise presence-only records, small samples, and are not a probability-based sample (Elith et al., 2006; Phillips & Dudík, 2008). Seventy percent of occurrence data were used for model training and 30% for testing, and this process was repeated five times using bootstrap sampling from all occurrence data. We used the average of the five models for our final analyses. We conducted jackknife tests of predictor variable importance. To determine variable importance, in each iteration of the training algorithm the change in regularized gain is added to the contribution of the corresponding variable. That means the higher contributing parameters are used more frequently than others, but does not necessary mean they are more important biologically.

Ten thousand random background points were used for each model and they were drawn from a 486 230 km² model domain based on river basin boundaries that extended up to 130 km outside of California (Fig. 1). At the 4 km scale the random sample covers 33% of the sample domain vs. 0.01% of the domain at the 90 m scale. The large difference in background sampling rate at different scales should not affect model parameterization. This is because the background samples in MaxEnt are considered random samples where the species could be present or absent, as opposed to ‘pseudo-absences’ (Phillips & Dudík, 2008). However, variation in background sampling will cause differences in model goodness-of-fit measures such as the area under the receiver-operating curve (AUC), which treats background samples as absences. The treatment of background samples as absences is certainly less appropriate for wide-ranging species at the 4 km scale. We report AUC values as an indication of model fits (Fielding & Bell, 1997), but do not compare AUC values across scales. Although there have been criticisms of the use of AUC to evaluate SDMs (Lobo et al., 2008), and AUC based on a random background sample many be inflated (Hijmans, 2012), it is a useful metric for comparison with other studies (Phillips et al., 2006; Elith & Graham, 2009).

For each species, one model was developed at each scale using climate data from the period 1971–2000. This model was then projected to four sets of future climate maps (two GCMs, four RCPs).

Table 1 Bioclimatic variables used as predictors

<table>
<thead>
<tr>
<th>Bioclimatic variable description</th>
<th>Abbreviation</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max temperature of warmest period</td>
<td>T_max</td>
<td>°C × 10</td>
</tr>
<tr>
<td>Min temperature of coldest period</td>
<td>T_min</td>
<td>°C × 10</td>
</tr>
<tr>
<td>Mean temperature of wettest quarter</td>
<td>T_wet</td>
<td>°C × 10</td>
</tr>
<tr>
<td>Mean temperature of driest quarter</td>
<td>T_dry</td>
<td>°C × 10</td>
</tr>
<tr>
<td>Growing degree days above 5 °C</td>
<td>GDD5</td>
<td>°C × 10 (cumulative)</td>
</tr>
<tr>
<td>Precipitation of wettest quarter</td>
<td>Ppt_wet</td>
<td>mm</td>
</tr>
<tr>
<td>Precipitation of warmest quarter</td>
<td>Ppt_warm</td>
<td>mm</td>
</tr>
<tr>
<td>Aridity index (annual ppt/PET)</td>
<td>Aridity</td>
<td>×100</td>
</tr>
</tbody>
</table>

Bioclim = conventional names from WORLDCLIM (Hijmans et al., 2005) (www.worldclim.org) based originally on ANUCLIM and BIOCLIM (Busby, 1986). *Not standard Bioclim variables. Units multiplied by 10 for faster processing using integer (not floating point) data while retaining precision.*
Herbs include perennials and annuals and some small stature perennial subshrubs. Evaluating the effects of scale on attributes of SDM predictions described by the spatial congruence index (based on a Dice similarity measure, Legendre & Legendre, 1998), the spatial overlap between suitable habitat at coarser scales vs. the finest was measured if these relationships varied with species characteristics (range size, life form, and habitat); we used species as the random effect (multiple models comprising repeated measures on species), as in similar studies (Elith et al., 2006). Generalized linear mixed models were Gaussian unless otherwise noted.

<table>
<thead>
<tr>
<th>Life Form</th>
<th>Range <10 000 km²</th>
<th>Intermediate 10 000–50 000 km²</th>
<th>Broad >50 000 km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herb</td>
<td>Acanthomintha ilicifolia (71)</td>
<td>Galium angustifolium (89)</td>
<td>Erigeron petrophilus (115)</td>
</tr>
<tr>
<td></td>
<td>Chorizanthe ocuttiana (9)</td>
<td>Ptilagrosis kingii (17)</td>
<td>Poa stellinaisi (17)</td>
</tr>
<tr>
<td></td>
<td>Deinandra conjugans (40)</td>
<td>Scutellaria californica (120)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delphinium hesperium (24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eryngium aristulatum (66)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrub</td>
<td>Arctostaphylos rainbowensis (51)</td>
<td>Adenostoma sparsifolium (243)</td>
<td>Ceanothus oliganthus (76)</td>
</tr>
<tr>
<td></td>
<td>Arctostaphylos rudis (11)</td>
<td>Arctostaphylos glandulosa (267)</td>
<td>Chamania foliosa (859)</td>
</tr>
<tr>
<td></td>
<td>Ceanothus megaraparps (471)</td>
<td>Arctostaphylos meavuka (192)</td>
<td>Corylus cornuta californica (2161)</td>
</tr>
<tr>
<td></td>
<td>Ceanothus verrucosus (87)</td>
<td>Artemisia cana bolanderi (19)</td>
<td>Hazardia squarrosa (420)</td>
</tr>
<tr>
<td></td>
<td>Quercus dumosa (173)</td>
<td>Artemisia rothrockii (18)</td>
<td>Heteromeles arbutifolia (1870)</td>
</tr>
<tr>
<td></td>
<td>Viguiera laciniata (25)</td>
<td>Ceanothus greggii perplexus (205)</td>
<td>Lepchnia calycina (72)</td>
</tr>
<tr>
<td>Tree</td>
<td>Cupressus forbesii (14)</td>
<td>Ceanothus tomentosus (117)</td>
<td>Pickeringia montana (35)</td>
</tr>
<tr>
<td></td>
<td>Juglans californica (86)</td>
<td>Ericameria ericoide (49)</td>
<td>Rhamnus rubra (157)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keckilla antirrhinoide (56)</td>
<td>Ribes malvaceum (87)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quercus salarriana (703)</td>
<td>Trichostema lanatum (83)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ribes lasianthum (22)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salvia leucophylla (25)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xyllococcus bicolor (133)</td>
<td></td>
</tr>
</tbody>
</table>

Herbs include perennials and annuals and some small stature perennial subshrubs.

Two emissions scenarios) at each of four scales. The threshold criterion used for analyses where binary maps of suitable vs. unsuitable habitat were required was the threshold where sensitivity equals specificity (Freeman & Moisen, 2008). R Development Core Team, 2012 packages rgdal (Keitt et al., 2010) and raster (Hijmans & van Etten, 2011) were used for thresholding, comparing, and analyzing maps.

The resulting models, based on bioclimatic variables only, predict climatically suitable future habitat conditioned on present distributions and climate. Although terrain effects are taken into account in the aridity index, these models do not include other factors known to limit plant distributions, such as substrate and landform that affect nutrient and water availability (Franklin, 1995). The reason we restricted our analysis to bioclimatic variables was so that the effect of climate-data downsampling on the spatial characteristics of predictions could be examined independently of other factors (e.g., the fixed scale of other potential predictor maps).

Analysis

Generalized linear mixed models (GLMMs) were used to evaluate the effects of scale on attributes of SDM predictions describing habitat area, change in area, and spatial overlap between present and future scenarios (Fig. 2), and to determine if these relationships varied with species characteristics (range size, life form, and habitat); we used species as the random effect (multiple models comprising repeated measures on species), as in similar studies (Elith et al., 2006). Generalized linear mixed models were Gaussian unless otherwise noted.

Predicted habitat area (current and future) and its projected net change, as well as range ratio and spatial congruence (based on current climate) were the response variables used to examine the effects of scale and species characteristics on the extent and location of modeled suitable habitat (based on the thresholded SDMs). Scale and species characteristics were the fixed effects. The range ratio was defined as the ratio of area predicted suitable at the coarser scales to the area predicted suitable at the finest scale for (a) 270 m vs. 90 m, (b) 800 m vs. 90 m, and (c) 4 km vs. 90 m. For this right-skewed response variable, a Poisson GLMM was estimated. For the same three pairs of spatial resolutions, the spatial overlap between suitable habitat at coarser scales vs. the finest was described by the spatial congruence index (based on a Dice Sorensen similarity measure, Legendre & Legendre, 1998),
\[\frac{2a}{(2a + b + c)} \], where \(a \) is the area mapped as suitable at both resolutions (overlap), \(b \) is the area mapped suitable at the coarse resolution but not fine, and \(c \) is the area mapped suitable at the fine resolution but not coarse. High values of the index indicate higher degrees of spatial congruence.

A potential cause of the larger predicted ranges observed with coarse climate data (Seo et al., 2009) is that response functions of species occurrence to bioclimatic predictors estimated from coarse-scale data may be broader and flatter, or less bounded (wider tolerances, less distinct limits, and optima and/or lower magnitude optima), than those estimated from fine-scale data. This is because coarse-scale data average the climate variables over broader areas, thus potentially missing some of the fine-scale variability that is relevant to the species’ physiological limitations. We examined this hypothesis by comparing the 90 and 4 km marginal response curves from MaxEnt for each of the 52 species across the eight bioclimatic variables (examples shown in Figure S1). The marginal response curves show how the logistic prediction of habitat suitability changes as each bioclimatic variable is varied, keeping all other predictor variables at their average value. To provide a summary of response curve shape change with scale, we categorized the 416 comparisons of fine- and coarse-scaled response curves as either: response curves from models using fine-scale data changed to more generalized response curves from models using coarse-scale data (i.e., changing from unimodal to monotonic, lower peak, broader range) or not (no change in shape, changes not as above), and weighted the tally by variable importance.

At each scale, the net change in habitat area between present and future climate predictions, a measure of predicted
greater predicted loss at coarser scales under the GFDL scenarios, but while PCM scenarios tended to predict slight gains in habitat area, there was no apparent trend with scale for PCM (Table S1), and no significant effect of species characteristics.

The range ratio (ratio of area predicted suitable at coarser scales to the area predicted suitable at 90 m resolution in a single time period) increased as resolution coarsened for current climate (Fig. 3), especially at 4 km ($P = 0.05$). As resolution coarsened, the average spatial congruence (overlap) with the 90 m predictions also decreased from more than 80% at 270 m to about 65% at 4 km (significantly lower; $P < 0.01$; Fig. 3). There was no significant effect of species characteristics on range ratio, but spatial congruence was somewhat lower for narrow-range species than for those in the larger range classes ($P = 0.02$), was higher for the shrubs ($P = 0.0002$) and trees ($P < 0.0001$) than herbs, and did not differ among habitats.

Although the predicted area of suitable habitat under both present and future climates was generally larger at coarser scales, the percent net change was not signifi-
cantly different among scales, shown for both GCMs and the A2 emissions scenario (Fig. 4). Under the GFDL A2 scenario, half of the models predicted net loss of suitable habitat of 30% or more, while for a few (6) species, large net gains were predicted at all scales (positive outliers in Fig. 4). The predicted net habitat changes for PCM were smaller (median -13% for 90 m and close to zero at the other resolutions). Predicted net change was greater for narrow-ranging species and lower for trees under both GFDL ($P = 0.004$ and 0.005, respectively) and PCM ($P = 0.006$ and 0.0004) A2 scenarios, and did not differ among habitats.

There was a trend for the percent stable range to increase with scale, from a median of 21% at 90 m to 28% at 4 km under the GFDL A2 scenario, and from 32% at 90 m to 49% at 4 km under the PCM A2 scenario; the trend is only significant for the PCM A2 scenario ($P = 0.0341$), and when scale is treated categorically, only for the 4 km data is percent stable range greater than for other scales ($P = 0.009$; Fig. 4). Predicted stable range was smaller for trees ($P = 0.0009$) and larger for foothills species ($P = 0.001$) under the PCM A2 scenario, but did not differ among range size classes.

On average, about 20% of species’ climatically suitable habitat predicted to be stable using finer scale data was missed by coarser scale models (e.g., Fig. 2) using the most extreme GFDL A2 scenario (Fig. 5a). The average percent was slightly higher (24%; $P = 0.10$), so the loss of information slightly greater, for 270 m vs. 800 m, compared with 90 m vs. 270 m or 800 m vs. 4 km. In addition, an average of 28% of habitat predicted to be stable using coarser scale data was not predicted to be stable using finer scale predictors (Figs 2 and 5b). This larger area of stable habitat predicted by coarser scale data increased systematically with scale and was greatest when going from 800 to 4 km resolution (42%), significantly greater than the other scale comparisons ($P < 0.01$).

The predicted distribution of stable range based on 4 km models shows only moderate agreement with the distribution of suitable habitat based on 90 m models that occurred within 4 km cells (GFDL A2, mean congruence = 0.41; Fig. 5c). Results vary widely among species, but congruence tended to be lower for species with small and medium range sizes (although the difference is not significant). Many of the predicted future local (90 m scale) habitat areas fall outside of areas
modeled as stable range with 4 km data. Compared with 4 km models, 90 m models for 38 of 52 species predicted a greater extent of 4 km areas to include locally suitable habitats both now and at end of century (e.g., Fig. 2d).

On average, the most important environmental predictor in SDMs for all species was precipitation of the wettest period, and importance did not change much with scale (Table 3). For the next most important predictors, aridity, and mean temperature of the coldest period, their importance tended to increase at the coarser scales, although the variability in importance among species also increased, and the scale differences were not significant. For growing degree days above 5 °C and precipitation of the warmest period, there was not much of a change in importance with scale. The least important predictors on average were mean temperature of the wettest, warmest, and driest periods, and the importance of these predictors tended to diminish at coarser scales. Response curves were broader and flatter, or less bounded (indicating wider tolerances, less distinct optima and/or lower magnitude optima) when estimated from the 4 km vs. 90 m climate variables about half of the time for the eight predictors when weighted by variable importance (Table 3).

Discussion

There is growing concern over the potential effect of climate-data spatial resolution when using SDMs to predict biodiversity impacts of climate change. This is because climate varies dramatically at local scales, and this variation is likely to be reflected in spatial data. For example, Ackerly et al. (2010) reported a difference in range of January minimum temperatures of 3 °C using 800 m PRISM climate grids vs. 8 °C when topoclimatic effects were modeled at a 30 m scale.

We found that there was a trend for SDMs using coarser-resolution data to predict larger habitat area; however, this difference was significant only when finer scales were compared with 4 km. There was a disproportionately greater difference in a number of measures of habitat area and location between 800 and 4 km predictions than between 90 and 800 m predictions. These patterns, observed for a topographically diverse region and a broad range of species types, potentially suggest that there may be a threshold, between 800 and 4 km, beyond which further spatial generalization affects predicted habitat area. It may therefore be advisable for users interested in climate-change impacts on species distributions to use approximately 800 m or higher resolution climate data as it is becoming increasingly available.

Furthermore, we found diminishing spatial congruence (agreement or overlap) between fine- and increasingly coarser scale predictions. The congruence between fine- and coarse-scale predicted habitat was lowest for narrow-range species. Therefore, these rare or range-restricted species would be disproportionately affected by generalization errors introduced by using coarse-scale climate data to project habitat shifts under climate-change scenarios. Seo et al. (2009) reported a similar pattern using simple spatial averaging of climate data.
data. Our study confirms this trend using spatially downscaled very high-resolution climate data and comparing them with moderate-resolution climate data (4 km) that are widely available.

Although coarser scale models generally predicted more habitat area than finer scale models, they also potentially underestimate the extent of localized suitable habitats because many of those habitats were not nested within areas classified as suitable at coarser scale. In other words, it is possible that, especially in mountainous terrain, 90 m data capture habitat variability that represents opportunities for local persistence that coarser scale data cannot resolve.

Our study used climate data that were statistically downscaled to four resolutions spanning three orders of magnitude, all of which would be considered fine-scaled compared with climate data that have previously been used for climate-change impact projections (e.g., 12–50 km). The 4 km scale averages ridge-to-ridge variability in complex terrain, whereas the 800 m scale begins to capture the larger topographic features, highlighting the differences between large valley bottoms and ridgetops. The 270 m scale captures climate at the hillslope scale in California, whereby several grid cells generally describe an individual hillslope (Flint & Flint, 2012). If these spatial scales are accurately reflected by the downscaling procedure, the 90 m scale may have improved the correlation of climate with plant distributions, especially in locations with more topographic complexity. Because the range of temperatures is smallest at fine resolutions, this effect, whereas important at a local scale, may not have been detectable at a regional scale. Also, the ability to increase the resolution of climate models by downscaling is limited in flat locations where adiabatic lapse rates are small, vs. locations with topographic complexity, where rates are large over short distances.

The strongest predictors of current distributions for the study species were wet season precipitation and the aridity index. Both wet season precipitation and aridity are probably serving as surrogates for seasonal or annual climatic water deficits that are of direct physiological importance to plants (see also Stephenson, 1998; Flint & Flint, 2012). Because we did not incorporate soils information, we could not model seasonal soil water balance across the landscape. Precipitation in the study region is mainly frontal cyclonic, and presumably less sensitive to local topography than temperature-related variables (Dobrowski, 2011). Although the aridity index exhibited greater sensitivity to spatial scale than other variables in our study, its influence in the distribution models increased at coarser scales. Given its dependence on local hillslope orientation, this result is contrary to our expectations and therefore difficult to explain. Possibly, the 90 m scale is still too coarse to resolve important local topographic facets that control radiation regimes, whereas at slightly coarser scales, the aridity index more effectively captures combinations of larger scale terrain orientation and precipitation gradients. Moreover, the downsampling methods used here did not account for important drivers of local temperature variation and soil moisture balance such as shading from surrounding hillslopes, fine-scale cold air pooling, and surface water convergence. We think it is likely that congruence between fine and coarse scales will decrease even further as local topoclimates are resolved with finer topographic data and additional refinements to the downscaling procedure.

Other studies have suggested that spatial averaging in coarse-scale climate data may result in an imprecise estimate of species response functions (Trivedi et al., 2008; Randin et al., 2009). In this study, models estimated from coarser climate data had broader, less bounded environmental response curves about half of

Table 3 Median variable importance (percent contribution of environmental variable to the MaxEnt model) shown for species distribution models (SDM) estimated at each scale. Range of values is shown in parentheses. Estimate of contribution of the each variable is based on increase in regularized gain in each iteration of the training algorithm. % species broader = the percent of the 52 species whose response curves were broader when estimated from 4000 m data than from 90 m data, and % weighted broader = that percent weighted by the variable importance in each species’ 90 m model. Variables are defined in Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>90 m</th>
<th>270 m</th>
<th>800 m</th>
<th>4000 m</th>
<th>% species broader</th>
<th>% weighted broader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ppt_wet</td>
<td>22 (0.1–66)</td>
<td>23 (0.1–65)</td>
<td>23 (0.1–69)</td>
<td>25 (0–67)</td>
<td>58</td>
<td>51</td>
</tr>
<tr>
<td>Aridity</td>
<td>11 (0.1–60)</td>
<td>12 (0.1–61)</td>
<td>14 (1–60)</td>
<td>17 (1–71)</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>T_min</td>
<td>8 (0.2–75)</td>
<td>9 (0.2–71)</td>
<td>6 (0.3–73)</td>
<td>12 (0.2–67)</td>
<td>38</td>
<td>57</td>
</tr>
<tr>
<td>GDD5</td>
<td>7 (0–69)</td>
<td>7 (0–71)</td>
<td>8 (0–71)</td>
<td>7 (0–63)</td>
<td>57</td>
<td>59</td>
</tr>
<tr>
<td>Ppt_warm</td>
<td>7 (0.4–61)</td>
<td>8 (0.6–58)</td>
<td>6 (0.2–59)</td>
<td>7 (0.3–40)</td>
<td>33</td>
<td>37</td>
</tr>
<tr>
<td>T_wet</td>
<td>5 (0–48)</td>
<td>4 (0–44)</td>
<td>5 (0–38)</td>
<td>3 (0–31)</td>
<td>37</td>
<td>44</td>
</tr>
<tr>
<td>T_max</td>
<td>6 (0–42)</td>
<td>5 (0–39)</td>
<td>4 (0.1–40)</td>
<td>4 (0.2–34)</td>
<td>38</td>
<td>33</td>
</tr>
<tr>
<td>T_dry</td>
<td>2 (0–19)</td>
<td>1 (0–17)</td>
<td>2 (0–18)</td>
<td>2 (0–19)</td>
<td>46</td>
<td>61</td>
</tr>
</tbody>
</table>

the time, so the trend was not consistent across species and predictors. Nevertheless, models using coarser-resolution climate data did yield predictions of larger, more generalized habitat areas both for current climate and future climate scenarios, consistent with expectations. Due to this generalization across scales, it is not surprising that the estimated percent change in habitat area from current to future did not differ significantly as a function of scale. This suggests that summary projections of, for example, the number of species expected to gain or lose climatically suitable habitat under climate-change scenarios might not differ greatly if they were based on 4 km vs. much finer scale climate data. However, these summary projections do not account for scale effects on the predicted location of stable habitat. The proportion of the species range predicted to be stable, i.e., the amount of spatial overlap between predicted current and future climatically suitable habitat, increased with coarser scale data. On average, 4 km data overestimated stable habitat by 42% compared with 800 m data.

The more spatially generalized estimates of stable habitat at coarser scales relative to finer scales, as well as the lack of spatial congruence between habitat forecasted to be stable at coarse vs. fine scale, both have more serious implications than percent change in area when SDMs form the basis of conservation decision making with regard to climate-change adaptation. In this study, SDMs based on coarser scale data would yield more optimistic projections than fine-scale predictions about the total amount of habitat likely to be stable, and therefore likely occupied, especially if these spatial forecasts of suitable habitat were used to support models accounting for dispersal (reviewed in Franklin, 2010), particularly for poorly dispersing species (Keith et al., 2008; Regan et al., 2010). At the same time, coarser scale models underestimate the presence of locally suitable habitats that could allow species persistence, i.e., without requiring dispersal to areas that may become climatically suitable in the future.

Another study examining climate-data scale effects also determined that coarse-scale data predicted persistence of habitat for plant species under warming scenarios where fine-scale models predicted loss (Trivedi et al., 2008). While they painted an optimistic picture of stable habitat with their broad brush, in our study coarser-resolution models failed to capture much of the habitat predicted to be stable under climate-change scenarios at finer resolutions, assuming that the fine-scale predictions are accurate (see also Flint & Flint, 2012). These spatial forecasts of the locations of future suitable habitat are crucial for conservation planning and adaptation policies.

In conclusion, the potential importance of local climate refugia for species persistence and rapid migration makes understanding the effect of climate-data spatial resolution especially critical for predicting the impacts of climate change on biodiversity in complex terrain. Determining how analysis scale and downscaling approach affect projected changes in habitat distributions under climate-change scenarios is necessary to establish risk-based conservation priorities and adaptation strategies. We found only small differences in estimated range extent based on downscaled climate grids at 800, 270, and 90 m resolution. However, the actual location of forecasted suitable or stable habitat varied considerably as a function of model resolution, especially comparing 4 km or 800 m model with 270 or 90 m model. The difference in location of modeled suitable habitat at 90 m vs. 270 m is minor, suggesting that, at least based on environmental data and climate downscaling methods used here, the answer to the question posed in the title of this study is that on average ‘270 m is fine enough,’ but results vary widely among species. In rugged terrain even finer models (e.g., 10–30 m) may be needed to represent ecologically significant microclimates associated with cold air pooling, topographic convergence, and insolation patterns (Dobrowski et al., 2009). These scale dependencies may also vary according to climate-change scenario and species range characteristics.

Acknowledgments

This research was supported by grants from the U.S. National Science Foundation (BCS-0824708 and DEB-0824708 to J. F and EF-1065826 to F. D.), the U.S. Department of Energy (DE-FG02-06ER64159) to J. F., the California Energy Commission (500-08-020) to F. D., M. L., and L. H., and by The Nature Conservancy, for which we are grateful to R. Shaw. We also thank H. M. Regan., D. D. Ackerly, and J. Ripplinger for commenting on an earlier draft of this article, which was also greatly improved by the comments of three anonymous reviewers.

References

Supporting Information

Additional Supporting Information may be found in the online version of this article.

Table S1. Predicted habitat area for 52 species as a function of climate-data resolution for present climate and four future climate scenarios for the period 2071–2100. Median and standard deviation (km²) for areas (Net change is the difference between actual and predicted area, CP: California Present; CS, C1, C2, C3, C4: Climate Scenarios 1, 2, 3, 4; T0: 2071–2100 present; T1: 2071–2100 climate scenario 1; T2: 2071–2100 climate scenario 2; T3: 2071–2100 climate scenario 3; T4: 2071–2100 climate scenario 4).

Table S2. AUC [Area under the curve (AUC) of the receiver-operating characteristic (ROC) plot] shown for each Species Distribution Model and each climate date resolution. AUC is a measure of model performance. It is interpreted as the probability that a random positive instance (species occurrence) and a random background observation are correctly discriminated by the model.

Figure S1. Examples of increasing generalization in marginal response curve shape estimated using MaxEnt from 90 m to 4 km scale are shown here. In the first row, the response of Cannabis tomentosus to precipitation in the wettest quarter (Bio_16) is strongly unimodal and skewed at 90 m resolution, with a peak of 0.8 at around 200 mm (A). At 4 km resolution (B) the response could be described as piecewise-linear and unbounded, with a positive response up to 200 mm, but then one that remains flat at higher values. In the second example, the marginal response of Deinandra congesta to minimum temperature of the coldest period (Bio_6) shows an optimum of about 0.8 at about 6 °C and is steeply negative above that at 90 m scale (C), but a lower peak (0.7) and is more or less flat (constant high probability) above that at 4 km scale (D). Under a scenario of increasing winter temperatures, habitat suitability could be predicted to increase at 4 km scale but not 90 m scale for this species.